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Introduction
I Motivation : long-ranged QED + poor signal at long distances in lattice

simulations

I Master equation for computing aHLbL
µ on the lattice [J. Green et al., Lattice 2015]

aHLbL
µ = −me6

3

∫
|y |

∫
x
2π2|y |3L[ρ,σ]µνλ(x , y)

∫
z

zρ〈Vµ(x)Vν(y)Vσ(z)Vλ(0)〉︸ ︷︷ ︸
−iΠ̂[ρ,σ]µνλ

I Lattice practitioner tricks :
I Modify the kernel to reduce the systematic errors (allowed by current

conservation), we use

L(2;λ) :=L(x , y)

− ∂(x)
µ (xαe−λm2

µx2/2)L[ρσ]ανλ(0, y)− ∂(y)
ν (yβe−λm2

µy2/2)L[ρσ]µβλ(x , 0)

I Exploit translational invariance to compute fewer Wick-contractions in the LQCD
computation

I Approach : compute analytically iΠ̂ using some model on the torus and do the
4-d x -integration numerically to compare the |y |-integrand
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Theory computation
I SU(3)f as starting point :

I Computations on the lattice are cheaper for us
I Non-suppressed Wick contractions in SU(3)f : fully-connected and (2+2)-disconnected

x

y z

x0

I Two ways to compute the QCD 4-pt function (cf. R.J. Hudspith’s talk) :
I Method 1 : compute all the Wick contractions, need sequential propagators
I Method 2 : compute only the "easy" Wick contractions and do change of variables in

the kernel (computationally cheaper)

aconn
µ ∝

∫
xyz

{(
L(x , y) + Lµ↔ν(y , x)− Lµ↔λ(x , x − y)

)
zρ + Lµ↔λ(x , x − y)xρ

}
×

adisc
µ ∝

∫
xyz

{(
L(x , y) + Lµ↔ν

)
× + L(x , y)×

}
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Theory computation
I Theory predictions : pion pole and charged-pion loop are expected

to give major contributions to the FSE

I Question : how to match different contractions to different Feynman
diagram in a given model ?

I Partially-Quenched ChPT (PQChPT) can be used to match the
ChPT computation to different Wick contraction in Lattice QCD
(this idea has been used for the HVP case)
[M. Della Morte and A. Jüttner, JHEP(2010)]

I With the Coordinated Lattice Simulations (CLS) mlight = mstrange
ensembles, one additional quark flavor is needed ⇒ PQChPT with
graded Lie-group SU(4|1) as symmetry group
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Theory computation
Mapping between the diagrams : pion-pole

I Use Vector-Meson-Dominance (VMD) model for the transition form factor
see eg. [M.Knecht and A. Nyffeler, PRD 65 (2002)], parameters taken from [A. Gérardin, H. B. Meyer and A. Nyffeler, PRD 100 (2019)]

I Two ways are used to find the relevant pseudo-scalar exchange channels (with
agreement) :

I Neglect the self-contracted disconnected quark loop by large Nc argument
I Consider Wess-Zumino-Witten term in PQChPT for π0γγ

similar to [W. Detmold, B. C. Tiburzi, and A. Walker-Loud PRD 73 (2006)]

I Mappings :

+∼

∼

I Match the charge factors to get the right weights
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Theory computation
FSE from π0-exchange : y -direction dependence

-20

 0

 20

 40

 60

 80

 100

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5

10
11

 f(
|y

|)
 fm

|y| / fm

4x pion contrib; kernel L(2), method 2

(mπ, mV, fπ)/MeV = (416, 924, 105.93)

y = n (0,1,1,1)

Mr = 0
Mr = 0.4
Mr = 0.8
Mr = 1.0

L = 2.76fm

I y = (0, n, n, n)
I Computed at mπ = 416 MeV and L = 2.76 fm, with kernel L(2;λ) with λ = M2

r
with Method 2

I Severe FSE when approaching the boundary (note : the QED-kernel is not
periodic)
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Theory computation
FSE from π0-exchange : y -direction dependence
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I y = (3n, n, n, n)
I Computed at mπ = 416 MeV and L = 2.76 fm, with kernel L(2;λ) with λ = M2

r
with Method 2

I One can go further in |y | with mild finite size effects in the tail with much
lighter FSE
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Theory computation
Check for analytic method : lepton loop in free theory with method 2
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I Lepton loop in free theory with mlepton = mµ : analytic approach vs. lattice (unit gauge)
I y = (n, n, n, n) , kernel L(2;0)

I L4 boxes with a = 0.1fm ⇒ discretization effects are not totally negligeable
I Qualitative agreement of the analytical computation and lattice data for the free theory

En-Hung Chao (JGU Mainz) FSE in HLbL to muon g − 2 9 / 14



Comparison with lattice results
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Comparison with lattice results
N202 and H200 from method 1 : connected contribution vs (π0, η) exchange
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I Lattice parameters (mπ, L) (MeV, fm) : H200 (420, 2.05) ; N202 (410, 3.08)
I Direct check of the volume effects on the lattice
I Agreement with (π0, η) exchange within sizeable uncertainties
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Comparison with lattice results
H101 from method 2 : connected contribution vs (π0, η) exchange
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SU(3)f lattice (H101) conn.
π0+η pole: L=2.76fm

π0+η pole: L=oo

I mπ = 416 MeV L = 2.76 fm
I Kernel L(2;λ) with λ = 0.4 is used ; y in the (0, n, n, n) direction
I (π0, η) exchange gives plausible description of the lattice data
I However, important negative contributions are missing in the tail : charged-pion loop

(computed as scalar QED) appears to be tiny in the tail, what else could be responsible ?
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Comparison with lattice results
H101 from method 2 : (2 + 2) disconnected contribution vs (π0, η) exchange
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I Inclusion of η′ for better prediction for the (2 + 2)-disconnected
[A. Gérardin et al., PRD 98 (2018)]

I Lattice data : 4000 measurements, kernel L(2;λ) with λ = 0.8 ; y in the
y = (0, n, n, n) direction
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Summary and outlook
I Attempt to understand the behavior at long distance of the aµ integrand using

models: motivated by poor signals in lattice simulations
I Understand the mapping mechanism between Feynman diagrams in different

models and the Lattice QCD Wick-contraction with the help of PQChPT
I Qualitative prediction for the FSE due to the choice of kernels and integration

variable y
I Description still needs to be improved, especially on the missing negative

contribution in the tail of the integrand (iso-vector scalar meson ?)
I Prediction for the physical pion ensemble (E250) : shows that the FSE might

be under control
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Back-up slides
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Kernel L(G) with different parameters
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I π0-exchange computed at physical pion mass and infinite volume
I Subtraction with different Gaussian masses helps to make the integrand

short-ranged (with λ = M2
r )

I Optimal at Mr < 1
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Analytic computation of iΠ̂
I Handling a non-periodic function f (zρ) on the lattice

∫ ∞
−∞

f (z)Π3(y , z)→
L−1∑
z=0

f ([z ])Π3(y , z) with [z ] =
{

z if z < L
2 − 1

z − L if z ≥ L
2

(1)

I Starting point : ∫ L

0
[z ]f (z) = −i

∑
q 6=0

f̂ (q)
q cos(qL

2 ) (2)

where f̂ is the discrete Fourier transform of f

f̂ (q) =
∫

dze−iqz f (z) (3)

we have ∫
z
[zρ]e i(p−q)z = −iV3δ(p−q)⊥,~0

Lρ
(p − q)ρ

cos( (p − q)ρLρ
2 ) (4)

I Periodic and anti-periodic quantities computable using Poisson summation
formula and Residue Theorem

I General form of the result for a four-point function
I A term independent of the jump introduced to handle zρ
I A term due to the jump
I Sum over three 4-d and one 1-d "winding numbers"
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Mapping different Wick contraction using PQ-theories
I Idea : introduce a quenched quark r and its ghost r̃ of the same mass as

(u, d , s) to realize a specific Wick-contraction
I The partition function remains the same ⇒ theory not modified
I Symmetry ⇒ same propagator for the quenched quark as for the other quarks
I Example : fully connected(

〈(ūγµd)(x)(d̄γνs)(y)(s̄γσr)(z)(r̄γλu)(0)〉+ h.c.
)

= 16 δ4ZPQQCD

δA(ud ,1)
µ (x)δA(ds,1)

ν (y)δA(sr ,1)
σ (z)δA(ru,1)

λ (0)

(5)

I PQChPT as EFT ⇒ same partition function as ZPQQCD
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Wess-Zumino-Witten term in PQChPT
I Effective action in presence of an external source [S. Scherer, Adv.Nucl.Phys. 27 (2003)]

Sext
WZW = − i

48

∫
d4xεµνρσtr(Zµνρσ) (6)

Zµνρσ ⊃UL
µU†∂νrρUlσ − UR

µ U∂ν lρU†rσ
− UL

µUL
νU†rρUlσ + UR

µ UR
ν UlρU†rσ

+ UL
µ lν∂ρlσ − UR

µ rν∂ρrσ
UL
µ∂ν lρlσ − UR

µ ∂νrr horσ

(7)

I In order to get the 4-pt function that we are interested in, we set

lµ = rµ = va
µT a (8)

I str(T a) = 0 ⇒ the only relevant term for π0 → γγ is thus

1
96π2F0

str(T aT bT c)
∫

d4xφcεµνρσF a
µνF b

ρσ (9)
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Mapping between the diagrams : charged-pion loop
I Consider ChPT (point-like pions) ⇒ has contact terms
I Mappings :

I Connected :

x0

x y

z

x y

x0 z

x = y

x0 z

z = 0

x y

x = x0

y z

y = z

x0 x

x = y
z = x0

x = x0

y = z

∼ +1
2
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